Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 195: 106488, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38565397

RESUMO

Given their highly polarized morphology and functional singularity, neurons require precise spatial and temporal control of protein synthesis. Alterations in protein translation have been implicated in the development and progression of a wide range of neurological and neurodegenerative disorders, including Huntington's disease (HD). In this study we examined the architecture of polysomes in their native brain context in striatal tissue from the zQ175 knock-in mouse model of HD. We performed 3D electron tomography of high-pressure frozen and freeze-substituted striatal tissue from HD models and corresponding controls at different ages. Electron tomography results revealed progressive remodelling towards a more compacted polysomal architecture in the mouse model, an effect that coincided with the emergence and progression of HD related symptoms. The aberrant polysomal architecture is compatible with ribosome stalling phenomena. In fact, we also detected in the zQ175 model an increase in the striatal expression of the stalling relief factor EIF5A2 and an increase in the accumulation of eIF5A1, eIF5A2 and hypusinated eIF5A1, the active form of eIF5A1. Polysomal sedimentation gradients showed differences in the relative accumulation of 40S ribosomal subunits and in polysomal distribution in striatal samples of the zQ175 model. These findings indicate that changes in the architecture of the protein synthesis machinery may underlie translational alterations associated with HD, opening new avenues for understanding the progression of the disease.

2.
Viruses ; 16(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38399981

RESUMO

Alphaviruses can replicate in arthropods and in many vertebrate species including humankind, but only in vertebrate cells do infections with these viruses result in a strong inhibition of host translation and transcription. Translation shutoff by alphaviruses is a multifactorial process that involves both host- and virus-induced mechanisms, and some of them are not completely understood. Alphavirus genomes contain cis-acting elements (RNA structures and dinucleotide composition) and encode protein activities that promote the translational and transcriptional resistance to type I IFN-induced antiviral effectors. Among them, IFIT1, ZAP and PKR have played a relevant role in alphavirus evolution, since they have promoted the emergence of multiple viral evasion mechanisms at the translational level. In this review, we will discuss how the adaptations of alphaviruses to vertebrate hosts likely involved the acquisition of new features in viral mRNAs and proteins to overcome the effect of type I IFN.


Assuntos
Alphavirus , Interferon Tipo I , Animais , Alphavirus/fisiologia , Linhagem Celular , Interferon Tipo I/genética , Vertebrados , Tropismo , Antivirais/farmacologia , Replicação Viral
3.
Nat Struct Mol Biol ; 31(3): 455-464, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38287194

RESUMO

Eukaryotic translation initiation involves recruitment of the 43S pre-initiation complex to the 5' end of mRNA by the cap-binding complex eIF4F, forming the 48S translation initiation complex (48S), which then scans along the mRNA until the start codon is recognized. We have previously shown that eIF4F binds near the mRNA exit channel of the 43S, leaving open the question of how mRNA secondary structure is removed as it enters the mRNA channel on the other side of the 40S subunit. Here we report the structure of a human 48S that shows that, in addition to the eIF4A that is part of eIF4F, there is a second eIF4A helicase bound at the mRNA entry site, which could unwind RNA secondary structures as they enter the 48S. The structure also reveals conserved interactions between eIF4F and the 43S, probaby explaining how eIF4F can promote mRNA recruitment in all eukaryotes.


Assuntos
Fator de Iniciação 4F em Eucariotos , Iniciação Traducional da Cadeia Peptídica , Humanos , Fator de Iniciação 4F em Eucariotos/genética , Fator de Iniciação 4F em Eucariotos/metabolismo , RNA Mensageiro/metabolismo , Códon de Iniciação/metabolismo , Ribossomos/metabolismo , DNA Helicases/metabolismo , Biossíntese de Proteínas , Fator de Iniciação 4A em Eucariotos/química , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo
4.
Nat Rev Mol Cell Biol ; 25(3): 168-186, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38052923

RESUMO

The regulation of gene expression is fundamental for life. Whereas the role of transcriptional regulation of gene expression has been studied for several decades, it has been clear over the past two decades that post-transcriptional regulation of gene expression, of which translation regulation is a major part, can be equally important. Translation can be divided into four main stages: initiation, elongation, termination and ribosome recycling. Translation is controlled mainly during its initiation, a process which culminates in a ribosome positioned with an initiator tRNA over the start codon and, thus, ready to begin elongation of the protein chain. mRNA translation has emerged as a powerful tool for the development of innovative therapies, yet the detailed mechanisms underlying the complex process of initiation remain unclear. Recent studies in yeast and mammals have started to shed light on some previously unclear aspects of this process. In this Review, we discuss the current state of knowledge on eukaryotic translation initiation and its regulation in health and disease. Specifically, we focus on recent advances in understanding the processes involved in assembling the 43S pre-initiation complex and its recruitment by the cap-binding complex eukaryotic translation initiation factor 4F (eIF4F) at the 5' end of mRNA. In addition, we discuss recent insights into ribosome scanning along the 5' untranslated region of mRNA and selection of the start codon, which culminates in joining of the 60S large subunit and formation of the 80S initiation complex.


Assuntos
Iniciação Traducional da Cadeia Peptídica , Ribossomos , Animais , Códon de Iniciação/genética , Códon de Iniciação/análise , Códon de Iniciação/metabolismo , Iniciação Traducional da Cadeia Peptídica/genética , Ribossomos/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Biossíntese de Proteínas/genética , Mamíferos/genética
6.
EMBO J ; 40(13): e103311, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33978236

RESUMO

Due to their capability to transport chemicals or proteins into target cells, cell-penetrating peptides (CPPs) are being developed as therapy delivery tools. However, and despite their interesting properties, arginine-rich CPPs often show toxicity for reasons that remain poorly understood. Using a (PR)n dipeptide repeat that has been linked to amyotrophic lateral sclerosis (ALS) as a model of an arginine-rich CPP, we here show that the presence of (PR)n leads to a generalized displacement of RNA- and DNA-binding proteins from chromatin and mRNA. Accordingly, any reaction involving nucleic acids, such as RNA transcription, translation, splicing and degradation, or DNA replication and repair, is impaired by the presence of the CPPs. Interestingly, the effects of (PR)n are fully mimicked by protamine, a small arginine-rich protein that displaces histones from chromatin during spermatogenesis. We propose that widespread coating of nucleic acids and consequent displacement of RNA- and DNA-binding factors from chromatin and mRNA accounts for the toxicity of arginine-rich CPPs, including those that have been recently associated with the onset of ALS.


Assuntos
Arginina/genética , Peptídeos Penetradores de Células/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a RNA/genética , Esclerose Amiotrófica Lateral/genética , Linhagem Celular Tumoral , Cromatina/genética , DNA/genética , Células HeLa , Histonas/genética , Humanos , Ácidos Nucleicos/genética , RNA/genética , Splicing de RNA/genética , RNA Mensageiro/genética , Espermatogênese/genética
7.
J Virol ; 94(3)2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31723025

RESUMO

Alphaviruses are insect-borne viruses that alternate between replication in mosquitoes and vertebrate species. Adaptation of some alphaviruses to vertebrate hosts has involved the acquisition of an RNA structure (downstream loop [DLP]) in viral subgenomic mRNAs that confers translational resistance to protein kinase (PKR)-mediated eIF2α phosphorylation. Here, we found that, in addition to promoting eIF2-independent translation of viral subgenomic mRNAs, presence of the DLP structure also increased the resistance of alphavirus to type I interferon (IFN). Aura virus (AURAV), an ecologically isolated relative of Sindbis virus (SV) that is poorly adapted to replication in vertebrate cells, displayed a nonfunctional DLP structure and dramatic sensitivity to type I IFN. Our data suggest that an increased resistance to IFN emerged during translational adaptation of alphavirus mRNA to vertebrate hosts, reinforcing the role that double-stranded RNA (dsRNA)-activated protein kinase (PKR) plays as both a constitutive and IFN-induced antiviral effector. Interestingly, a mutant SV lacking the DLP structure (SV-ΔDLP) and AURAV both showed a marked oncotropism for certain tumor cell lines that have defects in PKR expression and/or activation. AURAV selectively replicated in and killed some cell lines derived from human hepatocarcinoma (HCC) that lacked PKR response to infection or poly(I·C) transfection. The oncolytic activities of SV-ΔDLP and AURAV were also confirmed using tumor xenografts in mice, showing tumor regression activities comparable to wild-type SV. Our data show that translation of alphavirus subgenomic mRNAs plays a central role in IFN susceptibility and cell tropism, suggesting an unanticipated oncolytic potential that some naive arboviruses may have in virotherapy.IMPORTANCE Interferons (IFNs) induce the expression of a number of antiviral genes that protect the cells of vertebrates against viruses and other microbes. The susceptibility of cells to viruses greatly depends on the level and activity of these antiviral effectors but also on the ability of viruses to counteract this antiviral response. Here, we found that the level of one of the main IFN effectors in the cell, the dsRNA-activated protein kinase (PKR), greatly determines the permissiveness of cells to alphaviruses that lack mechanisms to counteract its activation. These naive viruses also showed a hypersensitivity to IFN, suggesting that acquisition of IFN resistance (even partial) has probably been involved in expanding the host range of alphaviruses in the past. Interestingly, some of these naive viruses showed a marked oncotropism for some tumor cell lines derived from human hepatocarcinoma (HCC), opening the possibility of their use in oncolytic therapy to treat human tumors.


Assuntos
Alphavirus/genética , Alphavirus/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Interferons/metabolismo , Proteínas Quinases/metabolismo , RNA de Cadeia Dupla/metabolismo , Animais , Antivirais/farmacologia , Apoptose , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Hepáticas , Camundongos SCID , Fosforilação , RNA Mensageiro/metabolismo , Vírus Sindbis/genética , Vertebrados/genética , Replicação Viral/efeitos dos fármacos
8.
Bio Protoc ; 10(16): e3713, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-33659377

RESUMO

The nucleotides involved in RNA-RNA interaction can be tagged by chemical- or UV-induced crosslinking, and further identified by classical or modern high throughput techniques. The contacts of mRNA with 18S rRNA that occur along the mRNA channel of 40S subunit have been mapped by site-specific UV crosslinking followed by reverse transcriptase termination sites (RTTS) using radioactive or fluorescent oligonucleotides. However, the sensitivity of this technique is restricted to the detection of those fragments that resulted from the most frequent crosslinkings. Here, we combined RTTS with RNAseq to map the mRNA-18S rRNA contacts with a much deeper resolution. Although aimed to detect the interaction of mRNA with the ES6S region of 18S rRNA, this technique can also be applied to map the interaction of mRNA with other non-coding RNA molecules (e.g., snRNAs, microRNAs and lncRNAs) during transcription, splicing or RNA-mediated postranscriptional regulation.

9.
Elife ; 82019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31789591

RESUMO

Loading of mRNA onto the ribosomal 43S pre-initiation complex (PIC) and its subsequent scanning require the removal of the secondary structure of the by RNA helicases such as eIF4A. However, the topology and mechanics of the scanning complex bound to mRNA (48S-PIC) and the influence of its solvent-side composition on the scanning process are poorly known. Here, we found that the ES6S region of the 48S-PIC constitutes an extended binding channel for eIF4A-mediated unwinding of mRNA and scanning. Blocking ES6S inhibited the cap-dependent translation of mRNAs that have structured 5' UTRs (including G-quadruplexes), many of which are involved in signal transduction and growth, but it did not affect IRES-driven translation. Genome-wide analysis of mRNA translation revealed a great diversity in ES6S-mediated scanning dependency. Our data suggest that mRNA threading into the ES6S region makes scanning by 48S PIC slower but more processive. Hence, we propose a topological and functional model of the scanning 48S-PIC.


Assuntos
Fator de Iniciação 4F em Eucariotos/genética , RNA Helicases/química , RNA Mensageiro/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução Genética , Regiões 5' não Traduzidas/genética , Quadruplex G , Iniciação Traducional da Cadeia Peptídica/genética , Biossíntese de Proteínas/genética , RNA Helicases/genética , RNA Mensageiro/química , Ribossomos/genética , Saccharomyces cerevisiae/genética
10.
Nucleic Acids Res ; 46(8): 4176-4187, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29415133

RESUMO

The topology and dynamics of the scanning ribosomal 43S pre-initiation complex (PIC) bound to mRNA and initiation factors (eIFs) are probably the least understood aspects of translation initiation in eukaryotes. Recently, we described a trapping mechanism in alphavirus that stalls the PIC during scanning of viral mRNA. Using this model, we were able to snapshot for the first time the eIF4A helicase bound to mRNA in a 48S initiation complex assembled in vitro. This interaction was only detected in the presence of the natural stem loop structure (DLP) located downstream from the AUG in viral mRNA that promoted stalling of the PIC, suggesting that DLP stability was enough to jam the helicase activity of eIF4A in a fraction of assembled 48S complexes. However, a substantial proportion of DLP mRNA molecules were effectively unwound by eIF4A in vitro, an activity that alphaviruses counteract in infected cells by excluding eIF4A from viral factories. Our data indicated that eIF4A-mRNA contact occurred in (or near) the ES6S region of the 40S subunit, suggesting that incoming mRNA sequences penetrate through the ES6S region during the scanning process. We propose a topological model of the scanning PIC and how some viruses have exploited this topology to translate their mRNAs with fewer eIF requirements.


Assuntos
Alphavirus/genética , Fator de Iniciação 4A em Eucariotos/química , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/química , RNA Viral/química , Subunidades Ribossômicas Menores de Eucariotos/química , Animais , Linhagem Celular , Fator de Iniciação 4A em Eucariotos/metabolismo , Modelos Moleculares , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo
11.
RNA Biol ; 13(12): 1223-1227, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27824302

RESUMO

Location of the translation initiation codon generally requires scanning of the 43S ribosomal preinitiation complex (43S PIC) from the 5' of the mRNA. Associated RNA helicases can facilitate movement of the 43S PIC by removing secondary structure present in the 5' UTR of mRNA, which is required for codon inspection. The canonical RNA-dependent helicase eIF4A is directly involved in this process, as part of the eIF4F complex (eIF4G + eIF4A + eIF4E) that associates first with mRNA and then recruits the 43S PIC to initiate scanning. The topology and operational mechanism of the scanning PIC are probably the least understood aspects of the initiation step. Recent findings from translation of alphavirus mRNA, together with new biochemical and structural data of the 43S PIC, suggest a role for the ES6S region of 40S as the gateway for mRNA entry during scanning. The presence of eIF4G-eIF4A complex in this region, interacting with the incoming mRNA, supports a model where eIF4A could work ahead of the scanning complex during translation initiation. Here we present additional data supporting this model.


Assuntos
RNA Mensageiro/química , Ribossomos/metabolismo , Proteínas Virais/metabolismo , Vírus/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4G em Eucariotos/metabolismo , Modelos Moleculares , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Viral/química , RNA Viral/genética , Vírus/genética
12.
Nucleic Acids Res ; 44(9): 4368-80, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-26984530

RESUMO

During translation initiation, eukaryotic initiation factor 2 (eIF2) delivers the Met-tRNA to the 40S ribosomal subunit to locate the initiation codon (AUGi) of mRNA during the scanning process. Stress-induced eIF2 phosphorylation leads to a general blockade of translation initiation and represents a key antiviral pathway in mammals. However, some viral mRNAs can initiate translation in the presence of phosphorylated eIF2 via stable RNA stem-loop structures (DLP; Downstream LooP) located in their coding sequence (CDS), which promote 43S preinitiation complex stalling on the initiation codon. We show here that during the scanning process, DLPs of Alphavirus mRNA become trapped in ES6S region (680-914 nt) of 18S rRNA that are projected from the solvent side of 40S subunit. This trapping can lock the progress of the 40S subunit on the mRNA in a way that places the upstream initiator AUGi on the P site of 40S subunit, obviating the participation of eIF2. Notably, the DLP structure is released from 18S rRNA upon 60S ribosomal subunit joining, suggesting conformational changes in ES6Ss during the initiation process. These novel findings illustrate how viral mRNA is threaded into the 40S subunit during the scanning process, exploiting the topology of the 40S subunit solvent side to enhance its translation in vertebrate hosts.


Assuntos
Alphavirus/genética , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/genética , RNA Viral/genética , Aedes , Alphavirus/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Códon de Iniciação , Cricetinae , Regulação Viral da Expressão Gênica , Sequências Repetidas Invertidas , Modelos Moleculares , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA Ribossômico 18S/química , RNA Ribossômico 18S/fisiologia , RNA Viral/química , RNA Viral/metabolismo , Ribossomos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...